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Viscously damped objects driven through a periodically modulated potential energy landscape can become
kinetically locked in to commensurate directions through the landscape, and thus can be deflected away from
the driving direction. We demonstrate that the threshold for an object to become kinetically locked in to an
array can depend exceptionally strongly on its size. When implemented with an array of holographic optical
tweezers, this process provides the basis for a continuous and continuously optimized sorting technique for
mesoscopic objects called “optical fractionation.”
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Many natural and technologically important processes in-
volve classical transport of small objects through modulated
potential energy landscapes. While the generic behavior of
modulated transport is well understood in one dimension[1],
fundamental questions remain for higher dimensions. Colloi-
dal particles flowing through arrays of optical tweezers[2,3]
provide a uniquely accessible experimental archetype for this
class of problems. Experiments on transport through square
arrays have revealed a devil’s staircase hierarchy of kineti-
cally locked-in states as a function of orientation[4]. Within
each locked-in state, particles select commensurate paths
through the array independent of the driving direction. The
ability to selectively deflect one fraction out of a flowing
mixture was predicted[4] to be useful for sorting and puri-
fying mesoscopic samples. Here, we describe a practical
implementation of this process, which we term optical frac-
tionation. Analyzing the kinematics of optical fractionation
further reveals that the threshold for kinetic lock-in can de-
pendexponentiallyon size.

Optical fractionation exploits a competition between opti-
cal gradient forces exerted by optical traps[2] and an exter-
nally applied force, as shown in Fig. 1. A driven particle’s
trajectory can be deflected enough by an encounter with one
trap to pass into the domain of the next, and so on down the
line. Such a trajectory is said to be kinetically locked-in to
the array. Optical fractionation’s selectivity emerges because
objects with different sizes, shapes or compositions can ex-
perience substantially different potential energy landscapes
in the same light field; periodicity emphasizes these differ-
ences. Objects that escape from the array flow away in the
driving direction, while locked-in objects can be deflected.
The two resulting fractions can be collected in separate mi-
crofluidic channels downstream.

To demonstrate optical fractionation in practice, we stud-
ied the transport of water-borne colloidal particles flowing
past a linear array of holographic optical tweezers[3]. The
colloidal suspension was confined to a 4 mm30.7 mm
340 mm glass channel formed by bonding the edges of two

glass cover slips. Capillary forces at the channel’s inlet were
used to create a flow of about 60mm/s along the midplane.
This flow carried a mixture of monodisperse silica spheres of
radius a1=0.79mm (Duke Scientific Lot No. 24169) and
a2=0.5 mm (Duke Scientific Lot No. 19057), which can be
distinguished visually and tracked to within 30 nm in the
plane at 1/60 s intervals using digital video microscopy[5].

Colloidal silica spheres are roughly twice as dense as wa-
ter and settle into a monolayer just above the channel’s lower
wall, with the smaller spheres floating about 1mm higher.
Given the Poisseuille flow profile in the channel, the larger
spheres travel slower, with a mean speed ofu1
=13±2 mm/s, compared with the smaller spheres’u2
=17±9 mm/s. The associated driving force,F j =g ju j, is
characterized by a size-dependent drag coefficient,g j, modi-
fied by proximity to surfaces[6].

Twelve discrete optical tweezers were arranged in a line
with center-to-center spacingb=3.6±0.1mm oriented atu
=12.0° ±0.5° with respect to the flow. Each trap was pow-
ered by 1.7±0.8 mW of laser light at 532 nm, which slightly
exceeded the empirically determined lock-in threshold for
the larger spheres, givenu and b. Each trap can capture
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FIG. 1. Principle of optical fractionation.(a) Different types of
particles are driven by external forceF0 through an array of optical
traps inclined at angleu. Strongly interacting particlessa1d are de-
flected by the array while the otherssa2d are not.(b) Trajectories for
large sa1=0.79mmd and small sa2=0.5 mmd spheres calculated
with Eq. (5) for experimental conditions described in the text.
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either type of sphere in the absence of flow. The trapping
plane was adjusted to minimize out-of-plane motions, so that
the system is effectively two-dimensional for both popula-
tions. Although this is useful for illustrative purposes, optical
fractionation also works in thick samples with three-
dimensional trap arrays.

The trajectories in Figs. 2(a) and 2(b) demonstrate that the
larger spheres are indeed systematically deflected by the ar-
ray of traps, while the smaller spheres are not. Consequently,
the array creates a shadow in the distribution of large spheres
into which the small spheres can flow. Because the purifica-
tion of small spheres and concentration of large results from
lateral deflection, this optical fractionation process can pro-
ceed continuously, in contrast to most competing techniques
[7].

Figures 2(c) and 2(d) show statistics compiled from tens
of thousands of trajectories. Here, we plot the two popula-
tions’ time-averaged areal densitiesnjsrd normalized by their
means. The separation’s quality is assessed in Fig. 3 with
Qsrd;fn1srd−n2srdg / fn1srd+n2srdg, which reaches unity in
regions containing only large spheres, and minus one in re-
gions with only small spheres. A transverse section taken
along line A in Fig. 3(a) and plotted as squares in Fig. 3(b)
reveals a thoroughly mixed sample withQshd=0 approach-
ing the traps. A similar section along lineB downstream of
the array demonstrates roughly 40% purification of both
large and small spheres. Much of the background can be
attributed to large particles escaping from the weakest traps
in our array[4]. In denser suspensions, this escape rate is
increased by collisions. Both processes can be mitigated by
projecting multiple lines of traps, with perfect deflection of
the locked-in fraction having been demonstrated[4] at
throughputs exceeding 10 000 particles/s. Larger arrays,
thicker samples, and faster flows would facilitate much
higher throughputs.

Optical fractionation’s ability to distinguish objects arises
as a general and previously unappreciated feature of trans-
port through periodically structured environments. Analyzing
such transport not only provides insights into optimizing
practical sorting, but also sheds new light on a range of
analogous processes.

The potential energy landscape presented by an optical
trap array is a convolution of the traps’ intensity profileIsrd
with an object’s optical form factorfsrd: Vsrd=−Isrd + fsrd.
The total applied force then isF = = fIsrd + fsrdg+F0, where
F0 is the driving force. An overdamped particle’s trajectory,
v=F /g, has one component,vx, along the row of traps and
another,vy, perpendicular. Although this problem is well un-
derstood in one dimension[1], few analytic results are avail-
able for the inclined line, and fewer still incorporate thermal
or quenched randomness. Consequently, we focus on the ki-
nematic limit in which the driving and trapping forces domi-
nate and trajectories may be treated deterministically. We
then estimate the threshold for an object to escape from an
array of optical traps, and thereby establish the selectivity of
optical fractionation.

Any trajectory entrained by the traps, such as the example
in Fig. 1(b), is characterized by turning points wherevy=0.
Conversely, any trajectory without such turning points must
be unbounded. This establishes as the maximum possible
locked-in deflection angle

sinum ø maxh]yf− Isrd + fsrdgj/F0. s1d

At a given u, objects are either deflected or not with a
selectivity set by the dependence of sinum on material prop-
erties. To estimateum, we model the array as a periodically
modulated line of light with intensityI0:

Isrd = I0 Asydo
n=0

`

an cossnkxd, s2d

where k=2p /b, the dimensionless transverse distribution
Asyd is symmetrically peaked aroundAs0d=1, and the coef-

FIG. 2. Optical fractionation of bidisperse silica spheres.(a)
Representative trajectories fora1=0.79mm at 1/60 s intervals.(b)
Trajectories fora2=0.50mm obtained simultaneously.(c) Time-
averaged areal densityn1srd for a1 relative to the mean,n0. Data
compiled from 30 000 trajectories.(d) Simultaneously acquired
data for 0.50mm radius spheres compiled from 45 000 trajectories.
The color bar indicatesni /n0 for both data sets, and the scale bar
denotes 10mm for all four panels.

FIG. 3. (Color online) (a) Spatially resolved quality of separa-
tion Qsrd obtained with a single line of optical traps. The cross
section transverse to the flow direction along line A is plotted as
squares in(b) and provides a baseline profile for the suspension’s
composition before optical fractionation. The cross section along B
[circles in (b)] shows the influence of the trap array. The curve in
(b) is a guide to the eye.
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ficients an account for the tweezers’ detailed structure with
on an=1.

Convolving first along thex direction by applying the
Fourier convolution theorem to each term in the sum, and
then noting that cosnkxø1 yields

sin um ø
V0

F0
maxH− ]yFAsyd + o

n=0

`

anf̃snka,ydGJ , s3d

whereV0~ I0 is the potential wells’ depth andf̃snka,yd is the
form factor’s Fourier transform along thex direction. The
array’s periodicity thus selects a discrete set of wave num-

bers from the continuousf̃ whose dependence ona endows
optical fractionation with exceptional size selectivity. This is

most clearly demonstrated iff̃ can be factored into inline and

transverse components,f̃snka,yd= f̃ xsnkadfysyd. In this case,

sin um ø qsado
n=0

`

anf̃xsnkad, s4d

with qsad=ksadV0/F0 and ksad=maxh−]yfAsyd + fysydgj.
Equivalent results can be obtained whenf̃ is not separable.

We turn our attention first to the transverse contribution.
If a particle is comparable in size to the optical tweezers’
width, w0, thenksad depends no more strongly on size than
1/a. For example, ifA and fy are Gaussians of widthsw0 and
a, respectively, thenksad~1/Îw0

2+a2. Similarly, the poten-
tial depthV0 and driving forceF0 generally scale as simple
powers ofa. Comparable algebraic sensitivity to size and
material properties is offered by other techniques such as gel
electrophoresis and field flow fractionation[7], and would be
obtained with an unmodulated line of lightsa0=1d.

The in-line contribution is more interesting. Because a
particle’s form factor vanishes outside the intervalx
P f−a,ag, its Fourier transform depends very strongly on
wave number. For example, a uniform dielectric cube
aligned with the array has a separable form factor,fxsxd=1

for uxu,a whose Fourier transform,f̃ xskad=sin ka/ skad, is

bounded by the leading-order cumulant expansion,f̃ xskad
&exps−k2a2/6d. The equivalent result for a sphere[8] with

fsrd=Î1−r2/a2 for ur u,a is f̃ xskad<sp /2dexps−k2a2/8d,
and fysyd<exps−k2y2/8d. All of these bounding approxima-
tions surpass exponential selectivity forkaù1, with the ac-
tual form factors depending even more strongly onka. Any
smooth, bounded, positive-definitefsrd on xP f−a,ag would
behave similarly. Applying this insight to Eq.(4) establishes
the lock-in transition’s exponential size sensitivity forka
*1

Comparably strong dependence on control parameters is
observed in analogous transitions between sub-harmonic
steps in driven charge density waves[9] and between kineti-
cally locked-in states in two-dimensional optical trap arrays
[4]. Similar results also can be obtained for arrays of poten-
tial barriers, suggesting that arrays of optical tweezers also
should be effective for sorting absorbing, reflecting and low-
dielectric particles that are repelled by laser light. This analy-
sis also carries over to filtration by arrays of micromachined

posts[10], which therefore should be able to resolve objects
substantially smaller than the inter-post separation.

Both f̃snka,yd and the coefficientsan fall off rapidly with
index n. Consequently, the sum in Eq.(4) is dominated by
the first term,n=1. This improves the approximations used
in deriving Eq.(4) and suggests that the result may be con-
sidered an estimate for sinum rather than simply a bound.

To demonstrate this, we apply this analysis to our present
experimental data, modeling the individual optical traps as
Gaussian potential wells

Vsrd = V0sado
j=1

N

expS−
sr − jbx̂d2

2s2sad
D , s5d

with s2sad<w0
2+a2 [11]. In this model,

sin um & qsadexpS−
b2

8s2D , s6d

whereqsad=s2/ÎedV0/ ssF0d. The weakest trap’s occupancy,
nj, is inversely proportional to the particles’ minimum speed,
vmin, as they pass through. Consequently, we can estimate the
relative trap strength from the data in Fig. 2 asqsad=2s1
−vmin/ud. Similarly, the separation between the depleted re-
gion ahead of the traps and the position of maximum occu-
pancy is 2ssad. From the histograms in Figs. 2(c) and 2(d),
we obtain qsad=1.6±0.1 and 0.9±0.2, andssad
=0.85±0.07mm and 0.58±0.07mm for the large and small
spheres, respectively[11]. These results suggestum
=14° ±1°.u for the large spheres andum=3° ±2°!u for
the small, which is consistent with the observation that only
the large spheres are systematically deflected atu=12°.

The threshold, sinum, depends only linearly onV0 andF0.
Thus, imperfections in practical trap arrays and fluctuations
in the driving force can be largely compensated for by the
substantially stronger dependence on particle size. Indeed,
Figs. 2 and 3 demonstrate robust size separation despite
more than 20% variation in flow velocity over the course of
the experiment.

Equation (6) also offers insights into applying optical
fractionation to nanometer-scale objects. Stokes drag scales
linearly with a, and the optical trapping potential for Ray-
leigh particles scales asa3, so thatqsad~a2. Sorting proteins
or nanoclusters, therefore, will require enhancingV0 by four
orders of magnitude. This might be accomplished by increas-
ing the light’s intensity and reducing its wavelength[12].
Even then, only algebraic size sensitivity should be expected
for objects witha!l becauseka!1 in this limit. Exploiting
resonances might overcome this limitation.

We have focused on effects due to deflection transverse to
the optical axis. Multi-dimensional separations could take
advantage of Bessel beams’ ability to exert controlled axial
forces[13] to distribute objects both transverse to and along
the optical axis.

In summary, we have demonstrated optical fractionation
for a model system of bidisperse colloidal spheres. This ap-
proach lends itself to continuous, rather than batch-mode
fractionation, with continuous tuning and dynamic optimiza-
tion over the entire accessible size range, i.e., nanometers to
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micrometers. The abrupt transition from free flow to kineti-
cally locked-in transport should offer exponential size selec-
tivity for objects larger than roughly 100 nm. Separation on
the basis of other characteristics also can be optimized, al-
though exponential sensitivity should not be expected in gen-
eral. Our analysis focuses on the kinematic limit,
F0b.V0.kBT, which is both tractable and appropriate for
weakly-trapped micrometer-scale colloid. Stronger trapping
would require a more detailed treatment of thermally assisted
hopping[1]. A substantially more sophisticated analysis also
would be required for higher-dimensional arrays.

The foregoing analysis may be applied to analogous sys-
tems. For example, we anticipate that similarly abrupt tran-
sitions should occur with variation of driving or trapping

strength for vortex creep through patterned type-II supercon-
ductors [14], electron transport through two-dimensional
electron gases[15], and electromigration on crystal surfaces,
with potentially useful applications resulting in each case.

Note added.Recently, we have become aware of a subse-
quently submitted independent experimental study of colloi-
dal sorting in an optical lattice[16].
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